Given a permutation of number from 1 to N. Among all the subarrays, find the number of unique pairs \((a, b)\) such that \(a \neq b\) and a is maximum and b is second maximum in that subarray.
Input:
First line contains an integer, N \((1 \le N \le 10^5)\). Second line contains N space separated distinct integers, \(A_i\) \((1 \le A_i \le N)\), denoting the permutation.
Output:
Print the required answer.
All the possible subarrays are:
1
\(1\; 2\)
\(1\; 2\; 3\)
\(1\; 2\; 3\; 4\)
\(1\; 2\; 3\; 4\; 5\)
2
\(2\; 3\)
\(2\; 3\; 4\)
\(2\; 3\; 4\; 5\)
3
\(3\; 4\)
\(3\; 4\; 5\)
4
\(4\; 5\)
5
The 4 unique pairs are:
\((2,\; 1)\)
\((3,\; 2)\)
\((4,\; 3)\)
\((5,\; 4)\)
Please login to use the editor
You need to be logged in to access the code editor
Loading...
Please wait while we load the editor
Login to unlock the editorial
Please login to use the editor
You need to be logged in to access the code editor
Loading...
Please wait while we load the editor